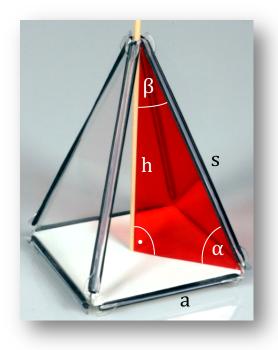
🔘 Prof. Dr. Peter H. Maier - Von dieser Kopiervorlage ist die Vervielfältigung für den eignen Unterrichtsgebrauch gestattet.

Arbeitsblatt Streckenberechnung bei quadratischen Pyramiden



Grundaufgaben:

- zum halben Diagonalschnitt
- die Berechnung erfolgt mit trigonometrischen Funktionen

Arbeitsauftrag

- Baue eine quadratische Pyramide, deren Mantelfläche aus gleichschenkligen Dreiecken besteht.
- Löse die Aufgaben mit Hilfe des Modells.
- Kontrolliere die Ergebnisse durch das Messen der Strecken am Modell und vergleiche diese Messungen mit deiner Lösung.

Die vier Grundaufgaben

Bei deinem Modell der quadratischen Pyramide beträgt:

- 1) die Seitenkante s=12,4 cm und die Körperhöhe h=11 cm. Berechne den Winkel α .
- 2 der Winkel $\alpha = 62,5^{\circ}$ und die Grundkante a = 8 cm. Berechne die Seitenkante. Kontrolliere dein Ergebnis mit der Angabe in Aufgabe (1).
- 3 der Winkel $\alpha = 62,5^{\circ}$ und die Seitenkante s = 12,4 cm. Berechne die Körperhöhe. Kontrolliere dein Ergebnis mit der Angabe in Aufgabe 1.
- 4 der Winkel $\alpha = 62,5^{\circ}$ und die Körperhöhe h = 11 cm. Berechne die Grundkante. Kontrolliere dein Ergebnis mit der Angabe in Aufgabe 2.

Wiederholung der vier Grundaufgaben

Bei einer quadratischen Pyramide beträgt:

- (5) die Seitenkante s=12~cm und die Körperhöhe h=7.5~cm. Berechne den Winkel β .
- 6 der Winkel $\beta = 88^{\circ}$ und die Grundkante a = 13,2 cm. Berechne die Seitenkante.
- 7 der Winkel $\beta = 40^{\circ}$ und die Seitenkante s = 9,5 cm. Berechne die Körperhöhe.
- (8) der Winkel $\beta = 28^{\circ}$ und die Körperhöhe h = 9 cm. Berechne die Grundkante.