Streckenberechnung bei quadratischen Pyramiden

Grundaufgaben:

- zur halben Seitenfläche
- die Berechnung erfolgt mit trigonometrischen Funktionen

Aufgabe 1

Bei deinem Modell der quadratischen Pyramide beträgt die Grundkante a=8 cm und die Seitenkante s=12,4 cm. Berechne den Winkel α .

Lösung

Berechnung des Winkels α

Formel aufstellen	$\cos \alpha = \frac{\frac{a}{2}}{s}$	Skizze:
Werte einsetzen	$\cos \alpha = \frac{\frac{8}{2}}{12,4}$	h _s s
Gleichung vereinfachen	$\cos \alpha = \frac{4}{12,4}$	
Lösung mit Maßeinheit notieren	$\alpha = 71, 2^{\circ}$	$\frac{a}{2}$

Aufgabe 2

Bei deinem Modell der quadratischen Pyramide beträgt der Winkel $\alpha=71,2^\circ$ und die Seitenflächenhöhe $h_s=11,7$ cm. Berechne die Seitenkante.

Lösung

Berechnung der Seitenkante s

[

 Sinus in der halben Seitenfläche]

Formel aufstellen	$\sin\alpha = \frac{h_s}{s}$	Skizze:
Werte einsetzen und Gleichung auflösen	$\sin 71,2^{\circ} = \frac{11,7}{s}$ · s $s \cdot \sin 71,2^{\circ} = 11,7$: $\sin 71,2^{\circ}$ $s = \frac{11,7}{\sin 71,2^{\circ}}$	h_s s
Lösung mit Maßeinheit notieren	s = 12,4 cm	$\frac{a}{2}$

Streckenberechnung bei quadratischen Pyramiden

Aufgabe ③

Bei deinem Modell der quadratischen Pyramide beträgt der Winkel $\alpha=71,2^{\circ}$ und die Grundkante a=8 cm. Berechne die Seitenflächenhöhe.

Lösung

Berechnung der Seitenflächenhöhe $h_{\rm s}$

[

□ Tangens in der halben Seitenfläche]

Formel aufstellen	$\tan \alpha = \frac{h_s}{\frac{a}{2}}$	Skizze:
Werte einsetzen	$\tan 71,2^{\circ} = \frac{h_s}{\frac{8}{2}}$	h _s s
Gleichung auflösen	$\tan 71,2^{\circ} = \frac{h_s}{4} \qquad \cdot 4 $ $h_s = \tan 71,2^{\circ} \cdot 4$	
Lösung mit Maßeinheit notieren	h _s = 11,7 cm	$\frac{a}{2}$

Aufgabe 4

Bei einer quadratischen Pyramide beträgt der Winkel $\alpha=71,2^\circ$ und die Seitenkante s=12,4 cm. Berechne die Grundkante.

Lösung

Berechnung der Grundkante a

Formel aufstellen	$\cos \alpha = \frac{\frac{a}{2}}{s}$	Skizze:
Werte einsetzen und Gleichung auflösen	$\cos 71,2^{\circ} = \frac{\frac{a}{2}}{12,4} \qquad \cdot $ $\frac{a}{2} = \cos 71,2^{\circ} \cdot 12,4$ $\frac{a}{2} = 4,00 \qquad \cdot $	12,4 h _s s
Lösung mit Maßeinheit notieren	a = 8,0 cm	$\frac{a}{2}$

Streckenberechnung bei quadratischen Pyramiden

Aufgabe (5)

Bei einer quadratischen Pyramide beträgt die Grundkante a =5 cm und die Seitenkante s=9 cm. Berechne den Winkel β .

Lösung

Berechnung des Winkels β

Formel aufstellen	$\sin \beta = \frac{\frac{a}{2}}{s}$	Skizze:
Werte einsetzen	$\sin\beta = \frac{\frac{5}{2}}{9}$	h s
Gleichung vereinfachen	$\sin\beta = \frac{2,5}{9}$	H _s S
Lösung mit Maßeinheit notieren	$\beta=16,1^{\circ}$	<u>a</u> <u>2</u>

Aufgabe 6

Bei einer quadratischen Pyramide beträgt der Winkel der Winkel $\beta=43,7^\circ$ und die Seitenflächenhöhe $h_s=13,5$ cm. Berechne die Seitenkante.

Lösung

Berechnung der Seitenkante s

Formel aufstellen	$\cos \beta = \frac{h_s}{s}$	Skizze:
Werte einsetzen und Gleichung auflösen	$\cos 43.7^{\circ} = \frac{13.5}{s} \cdot s$ $\cos 43.7^{\circ} \cdot s = 13.5 : \cos 43.7^{\circ}$ $s = \frac{13.5}{\cos 43.7^{\circ}}$	h _s s
Lösung mit Maßeinheit notieren	s = 18,7 cm	<u>a</u> 2

Streckenberechnung bei quadratischen Pyramiden

Aufgabe 7

Bei einer quadratischen Pyramide beträgt der Winkel $\beta=79^\circ$ und die Grundkante a=22,5 cm. Berechne die Seitenflächenhöhe.

Lösung

Berechnung der Seitenflächenhöhe h_s

[

□ Tangens in der halben Seitenfläche]

Formel aufstellen	$\tan \beta = \frac{\frac{a}{2}}{h_s}$	Skizze:
Werte einsetzen	$\tan 79^{\circ} = \frac{\frac{22,5}{2}}{h_{s}}$	β
Gleichung vereinfachen und auflösen	$\tan 79^{\circ} = \frac{11,25}{h_s}$ $\cdot h_s$ $\tan 79^{\circ} \cdot h_s = 11,25$ $\cdot \tan 79^{\circ}$ $h_s = \frac{11,25}{\tan 79^{\circ}}$	h _s s
Lösung mit Maßeinheit notieren	$h_s = 2, 2 \text{ cm}$	<u>a</u> 2

Aufgabe (8)

Bei einer quadratischen Pyramide beträgt der Winkel $\beta=57.7^\circ$ und die Seitenkante s=7.6 cm. Berechne die Grundkante.

Lösung

Berechnung der Grundkante a

Formel aufstellen	$\sin \beta = \frac{\frac{a}{2}}{s}$	Skizze:
Werte einsetzen und Gleichung auflösen	$\sin 57,7^{\circ} = \frac{\frac{a}{2}}{7,6} $	h_s s
Lösung mit Maßeinheit notieren	a = 12, 8 cm	<u>a</u> <u>2</u>